Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(4): e0352923, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38385742

RESUMO

Blood-borne infections caused by the carbapenem-resistant Enterobacter cloacae complex (CR-ECC) are major public threats with respect to the challenges encountered during treatment. This study describes the whole genome sequencing-based molecular characteristics of blood isolates (n = 70) of CR-ECC from patients admitted to the intensive care unit of tertiary care hospitals in Kolkata, India, during 2017-2022 with respect to species identification, antimicrobial resistance (AMR) profiling, mechanism of drug resistance, and molecular subtypes. Vitek2 MALDI and species-specific PCR identified Enterobacter hormaechei subsp. xiangfangensis (47.14%) as the emerging CR-ECC subspecies in Kolkata. The predominating carbapenemase and extended-spectrum ß-lactamase genes found were blaNDM-1 (51.42%) and blaCTX-M-15 (27%), respectively. Besides, blaNDM-4, blaNDM-5, blaNDM-7, blaCMH-3, blaSFO-1, blaOXA-181, blaOXA-232, blaKPC-3, and blaDHA-7 genes were also detected, which were not previously reported from India. A multitude of Class 1 integrons (including In180, In4874, In4887, and In4888, which were novel) and plasmid replicon types (IncFIB, IncFII, IncX3, IncHI1-HI2, IncC, and IncR) involved in AMR dissemination were identified. Reverse transcription-PCR and western blot revealed that carbapenem resistance in non-carbapenemase-producing CR-ECC isolates was contributed by elevated levels of ampC, overexpression of acrAB, and loss of ompF. A total of 30 distinct sequence types (STs) were ascertained by multi-locus sequence typing; of which, ST2011, ST2018, ST2055, ST2721, and ST2722 were novel STs. Pulsed-field gel electrophoresis analysis showed heterogeneity (69 pulsotypes with a similarity coefficient of 48.40%) among the circulating isolates, suggesting multiple reservoirs of infections in humans. Phylogenetically and genetically diverse CR-ECC with multiple AMR mechanisms mandates close monitoring of nosocomial infections caused by these isolates to forestall the transmission and dissemination of AMR.IMPORTANCEThe emergence and extensive dissemination of the carbapenem-resistant Enterobacter cloacae complex (CR-ECC) have positioned it as a critical nosocomial global pathogen. The dearth of a comprehensive molecular study pertaining to CR-ECC necessitated this study, which is the first of its kind from India. Characterization of blood isolates of CR-ECC over the last 6 years revealed Enterobacter hormaechei subsp. xiangfangensis as the most prevalent subsp., exhibiting resistance to almost all antibiotics currently in use and harboring diverse transmissible carbapenemase genes. Besides the predominating blaNDM-1 and blaCTX-M-15, we document diverse carbapenemase and AmpC genes, such as blaNDM-4, blaNDM-7, blaOXA-181, blaOXA-232, blaKPC-3, blaCMH-3, blaSFO-1, and blaDHA-7, in CR-ECC, which were not previously reported from India. Furthermore, novel integrons and sequence types were identified. Our findings emphasize the need for strengthened vigilance for molecular epidemiological surveillance of CR-ECC due to the presence of epidemic clones with a phylogenetically diverse and wide array of antimicrobial resistance genes in vulnerable populations.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Enterobacter cloacae , Enterobacter , Humanos , Enterobacter cloacae/genética , Tipagem de Sequências Multilocus , Proteínas de Bactérias/genética , beta-Lactamases/genética , Antibacterianos/farmacologia , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Plasmídeos/genética , Unidades de Terapia Intensiva , Carbapenêmicos/farmacologia , Testes de Sensibilidade Microbiana
2.
J Phys Chem Lett ; 14(49): 11168-11176, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38055348

RESUMO

In this Perspective, we provide an overview of recent advances in harvesting triplets for photovoltaic and photon upconversion applications from two angles. In singlet fission-sensitized solar cells, the triplets are harvested through a low band gap semiconductor such as Si. Recent literature has shown how a thin interlayer or orientation of the singlet fission molecule can successfully lead to triplet transfer. On the other hand, the integration of transition metal dichalcogenides (TMDCs) with suitable organic molecules has shown triplet-triplet annihilation upconversion (TTA-UC) of near-infrared photons. We consider the theoretical aspect of the triplet transfer process between a TMDC and organic semiconductors. We discuss possible bottlenecks that can limit the harvesting of energy from triplets and perspectives to overcome these.

3.
Cureus ; 15(8): e43579, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37719546

RESUMO

Background Hyperglycaemia can rarely manifest as hemichorea/hemiballismus, which subsides with adequate control of blood sugar. Our study accounted for patients with abnormal, involuntary limb movements with high blood sugar, excluding other conditions leading to or mimicking such a clinical appearance. It is very important to identify such patients as chorea secondary to an underlying etiology like hyperglycemia, which can be cured. Material & methods This study was done in IMS & SUM Hospital for a duration of one year, from March 2019 to February 2020, with a total of 11 cases with abnormal limb movements with a blood sugar of 250 mg% and above. Results In this study, 36.36%( n=4) of patients were female, and 63.63% (n=7) were males. The mean age of the patients at presentation was 66.5 years. Eighteen point one percent (18.1%; n=2) of the patients showed hemiballismus, 36.3% (n=4) showed hemichorea, 18.1% (n=2) showed hemiathetosis, 9.1% (n=1) showed myoclonus, and 18.1% (n=2) showed hemiballismus with hemichorea. The mean duration to correct hyperglycemia was found to be 34 hours and the mean duration to correct abnormal limb movements was 90.54 hours. Eighty-one point eight percent (81.8%; n=9) of patients showed basal ganglia changes on brain imaging.

4.
J Phys Chem Lett ; 13(34): 8104-8110, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35997534

RESUMO

The dynamics of excess protons in the protic ionic liquid (PIL) ethylammonium formate (EAF) have been investigated from femtoseconds to microseconds using visible pump mid-infrared probe spectroscopy. The pH jump following the visible photoexcitation of a photoacid (8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt, HPTS) results in proton transfer to the formate of the EAF. The proton transfer predominantly (∼70%) occurs over picoseconds through a preformed hydrogen-bonded tight complex between HPTS and EAF. We investigate the longer-range and longer-time-scale proton-transport processes in the PIL by obtaining the ground-state conjugate base (RO-) dynamics from the congested transient-infrared spectra. The spectral kinetics indicate that the protons diffuse only a few solvent shells from the parent photoacid before recombining with RO-. A kinetic isotope effect of nearly unity (kH/kD ≈ 1) suggests vehicular transfer and the transport of excess protons in this PIL. Our findings provide comprehensive insight into the complete photoprotolytic cycle of excess protons in a PIL.


Assuntos
Líquidos Iônicos , Prótons , Sulfonatos de Arila/química , Formiatos , Concentração de Íons de Hidrogênio
5.
J Phys Chem C Nanomater Interfaces ; 126(4): 1931-1938, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35145573

RESUMO

We studied the nature of excitons in the transition metal dichalcogenide alloy Mo0.6W0.4S2 compared to pure MoS2 and WS2 grown by atomic layer deposition (ALD). For this, optical absorption/transmission spectroscopy and time-dependent density functional theory (TDDFT) were used. The effects of temperature on A and B exciton peak energies and line widths in optical transmission spectra were compared between the alloy and pure MoS2 and WS2. On increasing the temperature from 25 to 293 K, the energy of the A and B exciton peaks decreases, while their line width increases due to exciton-phonon interactions. The exciton-phonon interactions in the alloy are closer to those for MoS2 than those for WS2. This suggests that exciton wave functions in the alloy have a larger amplitude on Mo atoms than that on W atoms. The experimental absorption spectra could be reproduced by TDDFT calculations. Interestingly, for the alloy, the Mo and W atoms had to be distributed over all layers. Conversely, we could not reproduce the experimental alloy spectrum by calculations on a structure with alternating layers, in which every other layer contains only Mo atoms and the layers in between also contain W atoms. For the latter atomic arrangement, the TDDFT calculations yielded an additional optical absorption peak that could be due to excitons with some charge transfer character. From these results, we conclude that ALD yields an alloy in which Mo and W atoms are distributed uniformly among all layers.

6.
J Phys Chem Lett ; 12(22): 5256-5260, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34048249

RESUMO

We studied the dynamics of transfer of photoexcited electronic states in a bilayer of the two-dimensional transition metal dichalcogenide ReS2 and tetracene, with the aim to produce triplets in the latter. This material combination was used as the band gap of ReS2 (1.5 eV) is slightly larger than the triplet energy of tetracene (1.25 eV). Using time-resolved optical absorption spectroscopy, transfer of photoexcited states from ReS2 to triplet states in tetracene was found to occur within 5 ps with an efficiency near 38%. This result opens up new possibilities for heterostructure design of two-dimensional materials with suitable organics to produce long-lived triplets. Triplets are of interest as sensitizers in a wide variety of applications including optoelectronics, photovoltaics, photocatalysis, and photon upconversion.

7.
J Phys Chem Lett ; 11(20): 8703-8709, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32959663

RESUMO

Singlet fission in tetracene generates two triplet excitons per absorbed photon. If these triplet excitons can be effectively transferred into silicon (Si), then additional photocurrent can be generated from photons above the bandgap of Si. This could alleviate the thermalization loss and increase the efficiency of conventional Si solar cells. Here, we show that a change in the polymorphism of tetracene deposited on Si due to air exposure facilitates triplet transfer from tetracene into Si. Magnetic field-dependent photocurrent measurements confirm that triplet excitons contribute to the photocurrent. The decay of tetracene delayed photoluminescence was used to determine a transfer efficiency of ∼36% into Si. Our study suggests that control over the morphology of tetracene during the deposition will be of great importance to boost the triplet transfer yield further.

8.
J Phys Chem Lett ; 11(15): 6146-6149, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32672041

RESUMO

Carrier multiplication (CM) generates multiple electron-hole pairs in a semiconductor from a single absorbed photon with energy exceeding twice the band gap. Thus, CM provides a promising way to circumvent the Shockley-Queisser limit of solar cells. The ideal material for CM should have significant overlap with the solar spectrum and should be able to fully utilize the excess energy above the band gap for additional charge carrier generation. We report efficient CM in mixed Sn/Pb halide perovskites (band gap of 1.28 eV) with onset just above twice the band gap. The CM rate outcompetes the carrier cooling process leading to efficient CM with a quantum yield of 2 for photoexcitation at 2.8 times the band gap. Such efficient CM characteristics add to the many advantageous properties of mixed Sn/Pb metal halide perovskites for photovoltaic applications.

9.
J Phys Chem Lett ; 10(18): 5302-5311, 2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31442050

RESUMO

Rapid hot carrier cooling is the key loss channel overriding all possible energy loss pathways that limit achievable solar conversion efficiency. Thus, delayed hot carrier cooling in the cell absorber layer can make hot carrier extraction a less cumbersome task, assisting in the realization of hot carrier solar cells. There have been plentitude of reports concerning the slow carrier cooling in perovskite materials, which eventually triggered interest in radical understanding of the native photophysics driving the device design. Here in this finding, a further dramatic dip in the cooling rate has been discerned upon a growing Cs4PbBr6 shell over CsPbBr3 core nanocrystals (NCs), in contrast to the bare CsPbBr3 core NCs. Using transient absorption spectroscopy, we investigated the disparity in the hot carrier thermalization pathways in the CsPbBr3 and CsPbBr3@Cs4PbBr6 core-shell NCs under the same laser fluence, which can be validated as a corollary of polaron formation in the later NCs.

10.
Chemphyschem ; 20(20): 2662-2667, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31120604

RESUMO

In this paper, we have investigated the possibility of utilizing CdZnS and CdZnSe alloy nanocrystals (NCs) as sensitizers in quantum-dot solar cells (QDSCs). The alloy NCs were synthesized by a high-temperature hot injection method and subsequently characterized through high photoluminescence quantum yield, along with larger size compared to binary NCs. Femtosecond transient absorption measurements revealed long-lived charge carriers in the alloy structure due to more structural rigidity and less defect states. Finally, the solar-cell efficiencies of the CdZnS (CdZnSe) NCs were found to be 3.05 % (3.69 %) as compared to 1.23 % (3.12 %) efficiencies for CdS (CdSe) NCs. Thus, common anion ternary NCs have been successfully utilized for solar-cell assembly and can be helpful for constructing tandem solar cells to harvest the high-energy portion of solar radiation.

11.
Chemistry ; 25(3): 692-702, 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-29992637

RESUMO

The photovoltaic performance of quantum-dot solar cells strongly depends on the charge-carrier relaxation and recombination processes, which need to be modulated in a favorable way to obtain maximum efficiency. Recently, significant efforts have been devoted to investigate the carrier dynamics of nanocrystal sensitizers, both in solution and deposited on TiO2 photoanodes, with the aim to correlate the excitonics with solar-energy conversion efficiency. This Minireview summarizes some proof of the concepts that efficiency can be directly correlated to the exciton dynamics of quantum-dot solar cells. The presented findings are based on CdSeS alloy, CdSe/CdS core/shell, Au/CdSe nanohybrids, and Mn-doped CdZnSSe nanocrystals, where the favourable excitonic processes are optimized to enhance the efficiency. Future prospects and limitations are addressed as well.

12.
Langmuir ; 34(1): 50-57, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29219326

RESUMO

In search of a viable way to enhance the power conversion efficiency (PCE) of quantum dot-sensitized solar cells, we have designed a method by introducing a hole transporting layer (HTL) of p-type CuS through partial cation exchange process in a postsynthetic ligand-assisted assembly of nanocrystals (NCs). High-quality CdSe and CdSSe gradient alloy NCs were synthesized through colloidal method, and the charge carrier dynamics was monitored through ultrafast transient absorption measurements. A notable increase in the short-circuit current concomitant with the increase in open-circuit voltage and the fill factor led to 45% increment in PCE for CdSe-based solar cells upon formation of the CuS HTL. Electrochemical impedance spectroscopy further revealed that the CuS layer formation increases recombination resistance at the TiO2/NC/electrolyte interface, implying that interfacial recombination gets drastically reduced because of smooth hole transfer to the redox electrolyte. Utilizing the same approach for CdSSe alloy NCs, the highest PCE (4.03%) was obtained upon CuS layer formation compared to 3.26% PCE for the untreated one and 3.61% PCE with the conventional ZnS coating. Therefore, such strategies will help to overcome the kinetic barriers of hole transfer to electrolytes, which is one of the major obstacles of high-performance devices.

13.
Chemistry ; 24(10): 2418-2425, 2018 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-29193394

RESUMO

Shell thickness dependent band-gap engineering of quasi type II core-shell material with higher carrier cooling time, lower interfacial defect states, and longer charge carrier recombination time can be a promising candidate for both photocatalysis and solar cell. In the present investigation, colloidal CdSe@CdS core-shells with different shell thickness (2, 4 and 6 monolayer CdS) were synthesized through hot injection method and have been characterized by high resolution transmission electron microscope (HRTEM) followed by steady state absorption and luminescence techniques. Ultrafast transient absorption (TA) studies suggest longer carrier cooling, lower interfacial surface states, and slower carrier recombination time in CdSe@CdS core-shell with increasing shell thickness. By TA spectroscopy, the role of CdS shell in power conversion efficiency (PCE) has been explained in detail. The measured PCE was found to initially increase and then decrease with increasing shell thickness. Shell thickness has been optimized to maximize the efficiency after correlating the shell controlled carrier cooling and recombination with PCE values and a maximum PCE of 3.88 % was obtained with 4 monolayers of CdS shell, which is found to be 57 % higher than compared to bare CdSe QDs.

14.
ACS Omega ; 3(3): 2706-2714, 2018 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458549

RESUMO

Ultrafast charge-transfer (i.e., electron and hole) dynamics has been investigated between the cesium lead bromide (CsPbBr3, CPB) perovskite nanocrystals (NCs) and cadmium selenide (CdSe) quantum dots (QDs) as a new composite material for photocatalytic and photovoltaic applications. The CPB NCs have been synthesized and characterized by high-resolution transmission electron microscopy (HR-TEM) and X-ray diffraction (XRD) pattern. The redox levels (i.e., conduction band (CB) and valence band (VB)) of the CPB NCs and CdSe QDs suggest the feasibility of photoexcited electron transfer from CPB NCs to CdSe QDs and photoexcited hole transfer from CdSe QDs to CPB NCs, and it has been confirmed by both steady-state and time-resolved spectroscopy. To investigate the electron- and hole-transfer dynamics in ultrafast time scale, we have performed femtosecond up-conversion and femtosecond transient absorption studies. The measured electron-transfer time from CPB NCs to CdSe QDs and hole-transfer time from CdSe QDs to CPB NCs were found to be 550 and 750 fs, respectively. Interestingly, the charge-transfer process found to be restricted in CPB/CdSe@CdS core-shell system where electron transfer from CPB NCs to core shell takes place, but the hole transfer from core shell to CPB NCs found to be restricted due to CdS shell making the process thermodynamically nonviable. Our observation has suggested that after the photoexcitation of CPB NCs/CdSe QDs composite system, a charge-separated state is formed where the electrons are localized in CB of CdSe QDs and holes are localized in VB of CPB NCs. This makes the composite system a better material for efficient light harvesting and photocatalytic material as compared to the individual ones.

15.
Chemistry ; 23(30): 7306-7314, 2017 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-28345273

RESUMO

Charge-transfer processes from photoexcited CdSe quantum dots (QDs) to phenol derivatives with electron- donating (4-methoxy) and -withdrawing (4-nitro) moieties have been demonstrated by using steady-state and time- resolved emission and femtosecond transient absorption spectroscopy. Steady-state and time-resolved emission studies suggest that in the presence of both 4-nitrophenol (4NP) and 4-methoxyphenol (4MP) CdSe QDs luminescence is quenched. Stern-Volmer analysis suggests both static and dynamic mechanisms are active for both the QD/phenol composites. Cyclic voltammetric analysis recommends that photoexcited CdSe QDs can donate electrons to 4NP and holes to 4MP. To reconfirm both electron- and hole-transfer mechanisms, CdSe/CdS quasi-type II and CdSe/CdTe type II core-shell nanocrystals were synthesized and photoluminescence quenching was monitored in the absence and presence of both 4NP and 4MP, for which hole and electron transfer were systematically restricted. Results suggest that indeed electron and hole transfer take place from photoexcited CdSe to 4NP and 4MP, respectively. To monitor the charge-transfer dynamics in both systems on an early timescale, femtosecond transient absorption spectroscopic techniques have been employed. Electron and hole transfer and charge-recombination dynamics are discussed and the effect of electron-donating and -withdrawing groups has been demonstrated.

16.
Chemphyschem ; 18(10): 1308-1316, 2017 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-28295982

RESUMO

Polymer-graphene nanocomposites are promising candidates for light harvesting applications such as photocatalysis and photovoltaics, where significant charge separation occurs due to photoinduced electron transfer. Much attention has been paid to using reduced graphene oxide (r-GO) as template for anchoring various nanomaterials due to its efficient electron accepting and transport properties. Here, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) nanoparticles are prepared from MEH-PPV polymer and the change in photophysical properties upon formation of polymer nanoparticles (PNPs) from the molecular state are investigated by using steady-state and time-resolved spectroscopy. Nanocomposites are constructed by adding hexadecylamine-functionalized positively charged MEH-PPV PNPs to a solution of negatively charged r-GO. Steady-state and time-resolved spectroscopy are also used to study the electronic interactions between PNPs and r-GO. Ultrafast femtosecond up-conversion and transient absorption spectroscopy unequivocally confirms the electron transfer process from the excited state of MEH-PPV PNPs to r-GO at the interface of the nanocomposite. Analysis reveals that the charge separation time is found to be pulse-width-limited (<100 fs). Due to charge separation in these nanocomposites, an increase (2.6 fold) of photocurrent under visible light illumination is obtained. The fundamental understanding of the charge transfer dynamics affords new opportunities to design efficient light-harvesting systems based on inorganic-organic hybrids.

17.
Chemistry ; 23(15): 3755-3763, 2017 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-28074494

RESUMO

To explore the significance of impurity doping in power conversion efficiency, quaternary gradient CdZnSSe alloy nanocrystals (NCs) and its Mn-doped analogues were synthesized by high-temperature pyrolysis. The undoped and Mn-doped CdZnSSe alloy NCs have been characterized by employing high-resolution TEM, X-ray diffraction, energy-dispersive X-ray spectroscopy, and electron paramagnetic resonance spectroscopy measurements. A low-temperature injection of chalcogens led to a gradient interface in the alloy, comprised of a CdSe/CdS/ZnSe/ZnS nanostructure. Both steady-state and ultrafast time-resolved absorption studies suggested the formation of a charge-transfer (CT) state due to the inner quasi-type II CdSe/CdS part of the gradient CdZnSSe alloy NCs, in which electrons are delocalized throughout the conduction band (CB) of both CdSe and CdS. The CT-state bleach recovery kinetics gave an additional slow electron cooling component (8 ps) in the undoped alloy NCs, which has been assigned to electron equilibration in the delocalized CB before recombination (or trapping). Interestingly, in the presence of dopant Mn, the slow electron cooling component became even more sluggish at 10 ps due to Mn-mediated electron cooling, in which Mn acts as an electron storage center. An unprecedented increase in the photocurrent conversion efficiency (PCE) of approximately 30 % from (3.3±0.11) to (4.29±0.07) % was observed in the Mn-doped gradient alloy compared with the undoped alloy.

18.
J Phys Chem Lett ; 7(7): 1359-67, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27003582

RESUMO

We have synthesized Mn-doped CdTeSe gradient alloy nanocrystals (NCs) by a colloidal synthetic method, and charge carrier dynamics have been revealed through ultrafast transient absorption (TA) spectroscopy. Due to the reactivity difference between Te and Se, a CdTe-rich core and CdSe-rich shell have been formed in the CdTeSe alloy with the formation of a gradient type II core-shell structure. Electron paramagnetic resonance studies suggest Mn atoms are located in the surface of the alloy NCs. Steady-state optical absorption and emission studies suggest formation of a charge-transfer (CT) state in which electrons are localized in a CdSe-rich shell and holes are localized in a CdTe-rich core which appears in the red region of the spectra. Electron transfer in the CT state is found to take place in the Marcus inverted region. To understand charge-transfer dynamics in the CdTeSe alloy NCs and to determine the effect of Mn doping on the alloy, ultrafast transient absorption studies have been carried out. In the case of the undoped alloy, formation of the CT state is found to take place through electron relaxation to the conduction band of the CT state with a time of 600 fs and through hole relaxation (from the CdSe-rich state to the CdTe-rich state) to the valence band of the CT state with a time scale of 1 ps. However, electron relaxation in the presence of Mn dopants takes place initially via an electron transfer to the Mn 3d state (d(5)) followed by transfer from the Mn 3d state (d(6)) to the CT state, which has been found to take place with a >700 ps time scale in addition to the hole relaxation time of 2 ps. Charge recombination time of the CT state is found to be extremely slow in the Mn-doped CdTeSe alloy NCs as compared to the undoped one, where the Mn atom acts as an electron storage center.

19.
J Phys Chem Lett ; 6(17): 3458-65, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26273721

RESUMO

Charge carrier dynamics of multinary quantum dots like CuInS2 (CIS) nanocrystals (NCs) is not clearly understood, especially in ultrafast time scales. Herein we have synthesized colloidal CIS NCs that show defect-induced emission between donor (antisite) and acceptor (internal/surface) states as indicated from steady-state and time-resolved photoluminescence (PL) measurements. Subpicosecond transient absorption (TA) spectra of CIS NCs reveal a gradient of electronic states that exists above the conduction band edge. The electron cooling rate has been determined to be ∼0.1-0.15 eV/ps. The cascade of electron cooling dynamics was monitored after following the TA kinetics at different electronic states. Interestingly, the kinetics at the antisite state unveil a biexcitonic feature, which has been enlightened through a probe-induced biexciton mechanism. With progressively higher fluence (⟨N⟩), the biexciton binding energy increases, and the electron cooling to the antisite state considerably slows down. Extra energy released during Auger recombination of bi/multiexcitons are used to re-excite the electron to a further high energy level, resulting in longer electron cooling time to the antisite states.


Assuntos
Coloides/química , Cobre/química , Índio/química , Nanopartículas/química
20.
J Phys Chem Lett ; 5(16): 2836-42, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26278087

RESUMO

Specially aligned surface-accumulated Mn-doped CdSe (MnCdSe) quantum dots (QDs) have been synthesized to study the effect of dopant atom on charge-carrier dynamics in QD materials. EPR studies suggest that the (4)T1 state of Mn(2+) lies above the conduction band of CdSe, and as a result no Mn-luminescence was observed from MnCdSe. Femtosecond transient absorption studies suggest that Mn atom introduces structural defects in surface-doped CdSe, which acts as electron trap center in doped QD for the photoexcited electron. Bromo-pyrogallol red (Br-PGR) were found to form strong charge-trasfer complex with both CdSe and MnCdSe QDs. Charge separation in both the CdSe/Br-PGR and MnCdSe/Br-PGR composites was found to take place in three different pathways by transferring the photoexcited hole of CdSe/MnCdSe QDs to Br-PGR, electron injection from photoexcited Br-PGR to the QDs, and direct electron transfer from the HOMO of Br-PGR to the conduction band of both the QDs. Hole-transfer dynamics are found to be quite similar (∼1.1 to 1.3 ps) for both of the systems and found to be independent of Mn doping. However, charge recombination dynamics was found to be much slower in the MnCdSe/Br-PGR system as compared with that in the CdSe/Br-PGR system, which confirms that the Mn dopant act as the electron storage center. As a consequence, the MnCdSe/Br-PGR system can be used as a better super sensitizer in quantum-dot-sensitized solar cell to increase efficiency further.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...